Archive | April, 2017

Return of the killer robot? Evil scientist?! Helpless woman?!?

30 Apr

by Paul Curzon, Queen Mary University of London

Digital blond copyright www.istock.com 439194

In an early issue of the cs4fn magazine we looked at how robots, female scientists and women generally were portrayed in 20th century science fiction movies. It wasn’t great. Robots were killers, scientists evil. Computer scientist’s were introverted and thickheaded. Women were either sexbots or helpless love interest to be rescued by the hunky male star. 1995’s film Hackers was about as good as it got. At last a woman had expert computing skills. It’s hardly surprising some girls are led to believe computing isn’t for them with a century-long conspiracy aiming to convince them their role in life is to be helpless.

As our area on women in computing shows the truth is far more interesting. Women have always played a big part in the development of modern technology. So have things improved in films? There are more films with strong action-heroine stars now, though few films pass the Bechdel test: do two women ever talk together about anything other than a man? So can we at least find any 21st century films with realistic main character roles for women as computer experts? Here goes…

1999-2003: Matrix Trilogy

Hero Neo discovers reality isn’t what it seems. It is all a virtual reality. Trinity is there to be his romantic interest – she’s been told by the Oracle that she will fall in love with the “One” (that’s him). It’s not looking good. In film 2 Neo has to save her. Oh dear. At least she is supposed to be a super-hacker famous for cracking an uncrackable database. Oh well.

2009: The Girl With the Dragon Tattoo

This is the story of super-hacker Lisbeth Salander. Both emotionally and sexually abused as a child she looks after herself, and that includes teaching herself to be an expert with computers. She uses her immense skills to get what she wants. She is cool and clever and absolutely not willing to let the men treat her as a victim. Wonderful.

2014: Captain America: The Winter Soldier

This film is all about a male hunk, so it’s not looking good, but then early on we see Agent Natasha Romanoff, (also known as superheroine the Black Widow). She is the brains to Captain America’s brawn and from the start she is clearly the expert with computers. While Captain America beats people up, her mission is to collect data. Let’s hope she gets her own film series!

2015: Star Wars: Episode VII – the Force Awakens

Rey is a scavenger with engineering skills. She is very smart, and can look after herself without expecting men to save her. She’s not a hacker! Instead, she creates and mends things. She repurposes parts she finds on wrecked spaceships to sell to survive. She learnt her engineering skills tinkering in old ships and fixes the Millennium Falcon’s electro-mechanical problems. She is even the main character of the whole film!

 

There are plenty of moronic films, made by men who can’t portray women in remotely realistic ways, but at least things are a bit better than they were last century. The women are already here in the real world. They are slowly getting there in the movies. Let’s just hope the trend speeds up, and we have more female leads who create things, like the real female computer scientists.

Email your reviews of female characters in science fiction films (good or bad) to cs4fn@eecs.qmul.ac.uk

Advertisements

Who invented Morse code?

29 Apr

by Paul Curzon, Queen Mary University of London

Morse code tapper: www.istock.com 877875

Who invented Morse code? Silly question, surely! Samuel Morse, of course. He is one of the most celebrated inventors on the planet as a result. Morse code helped revolutionise global communications. It was part of the reason the telegraph made fast, world-wide communication a practical reality. Morse did invent a code to use for the telegraph, but not Morse code. His code was, by comparison, a poor, inflexible solution. He was a great businessman, focussed on making his dream a reality, but perhaps not so good at computational thinking! The code that bears his name was largely invented by his partner Alfred Vail.

Samuel Morse was originally a painter. However, his life changed when his wife died suddenly. He was away doing a portrait commission at the time. On hearing of his wife’s illness he rushed home, but the message, delivered by a horse rider had taken too long to reach him and she died and was buried before he got there. He dedicated his life to giving the world a better way of communicating as a result. Several different people were working on the idea of a way to send messages by electricity over wires, but no one had really come up with a usable, practical system. The physics had largely been sorted, but the engineering was still lacking.

Morse came up with a basic version of an electrical telegraph system and he demonstrated it. Alfred Vail saw the demonstration and persuaded Morse to take him on as a partner. His father built a famous ironworks, and so he had worked as a machinist. He improved Morse’s system enormously including making the tapping machine used to send messages.

He wasn’t just good at engineering though. He was good at computational thinking, so he also worked on the code used for sending messages. Having a machine that can send taps down a wire is no use unless you can also invent a simple, easy to use algorithm that turns words into those taps, and back again once it arrives. Morse came up with a code based on words not letters. It was a variation of the system already used by semaphore operators. It involved a code book: essentially a list of words. Each word in the book was given a number. A second code turned numbers in to taps – in to dots and dashes. The trouble with this system is it is not very general. If the word you want to send isn’t in the code book you are stuffed! To cover every possibility it has to be the size of a dictionary, with every word numbered. But that would make it very slow to use. Vail came up with a version where the dots and dashes represented letters instead of numbers, allowing any message to be sent letter by letter.

He also realised that some letters are more common than others. He therefore included the results of what we now call “frequency analysis” to make the system faster, working out the order of letters based on how common they are. He found a simple way to do it. He went to his local newspaper offices! To print a page of text, printing presses used metal letters called movable type. Each page was built up out of the individual metal letters slotted in to place. Vail realised that the more common a letter was, the more often it appeared on any page, and the more metal versions the newspaper office would therefore need if they wasn’t to keep running out of the right letters before the page was done. He therefore counted how many of each “movable type” letter the newspaper printers had in their trays. He gave the letters that were most common the shortest codes. So E, for example, is just a single dot as it is the most common letter in American English. T, which is also common, is a single dash. It is this kind of attention to detail that made Morse code so successful. Vail was really good at computational thinking!

Morse and Vail worked really well as a team, though Morse then took all the credit because the original idea to solve the problem had been his, and their agreement meant the main rights were with Morse. They almost certainly worked together to some extent on everything to do with the telegraph. It is the small details that meant their version of the telegraph was the one that took over the world though and that was largely down to Vail. Morse maybe the famous one but the invention of the telegraph needed them both working together.

More on …

Cyber Security at the Movies: Guardians of the Galaxy (Fail Secure security)

28 Apr

by Paul Curzon, Queen Mary University of London

[Spoiler Alert]

Guardians of the Galaxy  Poster

If you are so power hungry you can’t stand the idea of any opposition; if you want to make a grab for total power, so decide to crush everyone in your way, then you might want to think about the security of your power supply first. Luckily, all would-be dictators who crush everyone who gets in their way as they march towards total domination of the galaxy, tend to be very naive about cyber-security.

Take Ronan the Accuser in the original Guardian of the Galaxy film. He’s a villain with a religious streak, whose belief that strength is virtue and weakness is sin leads to his totally corrupted morality. To cut to the guts of the story he manages to get the “Infinity Stone” that gives unimaginable power to its owner. With it he can destroy anyone who gets in his way so sets out to do so.

Luckily for the Galaxy, good-guy Peter Quill, or Star-Lord as he wants to be known, and his fellow Guardians have a plan. More to the point they have Gamora. She is an assassin originally sent to kill Quill, but who changes sides early on. She is an insider who knows how Ronan’s security system works, and it has a flaw: its big, heavy security doors into his control room.


Security Lesson 1. It should still be secure even when the other side know everything about how it works. If your security relies on no one knowing, its almost certainly bad security!


Once inside his ship, to get to Ronan the Guardians will need to get through those big heavy security doors. Now once upon a time big, heavy doors were locked and barred with big, heavy bolts. Even in Roman times you needed a battering ram to get in to a besieged city if they had shut the doors before you got there. Nowadays, how ever big and heavy the door, you may just need some cyber skills to get in if the person designing it didn’t think it through.

Electromagnetic locks are used all over the place and they give some big advantages, such as the fact that they mean you can program who is and isn’t allowed entry. Want to keep someone out – you can just cancel their keycard in the system. They are held locked by electromagnets: magnets that are switched on and off using an electric current. That means computers can control them. As the designer of an electromagnetic lock you have a choice, though. You can make them either “fail safe” or “fail secure”. With a fail safe lock, when the power goes, the doors automatically unlock. With fail secure, instead they lock. Its just a matter of whether the magnet is holding the door open or closed. Which you choose when designing the lock depends on your priorities.

Fail safe is a good idea, for example, if you want people to be able to escape in an emergency. If a fire cuts the electricity you want everyone to still be able to get out, not be locked in with no chance of escape. Fail secure on the other hand is good if you don’t want thieves to be able to get in just by cutting the power. The magnets hold the bolts open, so when the power goes, the spring shut.


Security Lesson 2. If you want the important things to stay secure, you need a fail secure system.


This is Ronan’s problem. Zamora knows that if you cut the power supply then the doors preventing attackers getting to him just open! He needed a fail secure door, but instead had a fail safe one installed. On such small things are galaxies won and lost! All Zamora has to do is cut the power and they can get to him. This of course leads to the next flaw in his security system. It wouldn’t have mattered if the power supply was on the secure side of that door, but it wasn’t. Ronan locks himself in and Zamora can cut the power from the outside … Dhurr!

There is one last thing that could have saved Ronan. It needed an uninterruptible power supply.


Security Lesson 3. If your system is reliant on the power supply, whether a door, your data, your control system or your life-support system, then it should keep going even if the power is switched off.


After all, what if the space ships cleaners (you never see them but they must be there somewhere!) unplug the door lock by mistake just because they need somewhere to plug in the hoover.

The solution is simple: use an “uninterruptible power supply”. They are just very fast electricity storage systems that immediately and automatically take over if the main power cuts out. The biggest on Earth keeps the power going for a whole city in Alaska (you do not want to lose the power running your heating mid-winter if you live in Alaska!). Had Ronan’s doors had a similar system, the doors wouldn’t have just opened as the power would not have been cut off.It’s always the small details that matter in cyber security (and in successfully destroying your enemies and so ruling the universe). As with all computational thinking, you have to think about everything in advance. If you don’t look after your power supply, then you may well lose all your power over the galaxy too (and your life)!


More on …